Математика
Физика
Химия
География
Биология
Экология
Информатика
Экономика
Русский язык
Литература
Музыка
МХК и ИЗО
ОБЖ
История и
 обществознание

Иностранные языки
Спорт и здоровье
Технология
ТОП 20 статей сайта
Рекомендуем посетить

Преподавание химии

Общие свойства металлов

Добавлено: 2014.08.15
Просмотров: 291

Рябова Ольга Евгеньевна, учитель химии и биологии

Цель урока: сформировать понятие о металлах как группе элементов, вещества которых проявляют общие свойства, обусловленные сходством строения.

Задачи урока.

Образовательные:

1) закрепить знания о положении металлов в периодической системе, характерных особенностях строения атомов больших и малых периодов;

2) познакомить с металлической связью, типами кристаллических решеток металлов и на основании этого выяснить причину особых физических свойств металлов;

3) познакомить со способностью металлов образовывать сплавы, рассмотреть свойства отдельных сплавов и их отличия от чистых металлов.

Развивающие: развить умения делать выводы о свойствах на основе строения, а также развитие способности анализировать и сравнивать.

Воспитательные: вызвать интерес у учащихся к огромной роли металлов в жизни человека и в развитии народного хозяйства.

Оборудование: образцы различных металлов и изделия из них.

- коллекция “металлы и сплавы”.

- компьютер, проектор, экран.

Основные понятия: окислитель, восстановитель, элемент, простое вещество, степень окисления, период, ряд, группа, подгруппа, типы химической связи, металлическая связь, кристаллические решетки металлов.

План урока:

  1. Организационный момент.
  2. Металл – химический элемент. Положение металлов в периодической системе Менделеева, особенности строения атомов металлов (свойства, нахождение в природе).
  3. Металл – простое вещество. Металлическая связь. Кристаллическое строение металлов.
  4. Физические свойства металлов.
  5. Сплавы.

Ход урока

1. Организационный момент.

Сегодня на уроке ребята мы с вами начнем изучение нового материала, а именно рассмотрим положение металлов в периодической системе, рассмотрим особенности строения их атомов и кристаллических решеток, а также поговорим о физических свойствах металлов и рассмотрим понятие сплавы.

2. Краткая вступительная беседа о практической важности металлов в жизни человека. Огромное значение металлов в нашей жизни. Георг Агрикола (ученый 16 века) писал: Человек не может обойтись без металлов….если бы не металлы человек влачил бы самую омерзительную и жалкую жизнь среди диких зверей. Ломоносов также посвятил металлам вдохновенные строки: металлы подают укрепление и красоту важнейшим вещам, в обществе потребным. Ими защищаемся от нападения неприятеля, ими утверждаются корабли и силою их связаны. Металлы служат нам в уловлении земных и морских животных для пропитания нашего… и кратко сказать ни едино художество, ни едино ремесло простое употребление металлов миновать не может. Давайте же познакомимся с ними поближе и взглянем на периодическую систему Менделеева.

І. Положение металлов в периодической системе Менделеева.

Металлы как химические элементы. В настоящее время официально зарегистрировано 108 хим. элементов. Большинство из них металлы (более 80). В периодической системе металлы имеются во всех группах: І – ІІ гр. – все металлы, кроме H, в ІІІ гр. – все металлы, кроме B, в ІV гр. – все металлы, кроме C, Si, в V гр. – все металлы, кроме N, P, As, в VІ гр. – все металлы, кроме O, S, Se, Te, в VІІ гр. – все металлы, кроме п./гр. галогенов, в VІІІ гр. – все металлы, кроме инертных элементов. Таким образом, металлы располагаются в левой и нижней части периодической системы, а неметаллы в правой части наверху.

На экране таблица размещения неметаллов в периодической системе химических элементов <рисунок 1>.

Получается, что металлов в периодической системе больше, чем неметаллов. С чем же это связано спросите вы у меня, и я отвечу, что это связано с особенностями строения атомов металлов.

У атомов металлов на внешнем энергетическом уровне обычно находится от 1 до 3-4 электронов. С 4-го периода начинается заполнение предвнешнего d – подуровня, начиная со скандия (Sc), при этом на внешнем уровне остается 2 электрона, реже 1, если наблюдается провал электрона <рисунок 2>.

Значит, делаем вывод, что свойства металлов у этих элементов присутствуют. Такая же закономерность наблюдается и у атомов 6 периода. Таким образом, все элементы побочной подгруппы это металлы, причем четный ряд в больших периодах – металлы, а нечетный ряд – неметаллы.

Особенностью строения атомов металлов является небольшое число электронов на внешнем энергетическом уровне (от одного до трех). Следовательно, атомы металлов в отличие от атомов неметаллов легко отдают наружные электроны, т.е. являются сильными восстановителями, они проявляют только положительные степени окисления от +1 до +3. Давайте посмотрим, как изменяются свойства металлов в периодах и группах. Итак, в группе сверху вниз R атома увеличивается, следовательно, способность притягивать электроны меньше, а металлические свойства усиливаются. В периоде R атома уменьшается, следовательно, способность притягивать к себе электроны выше и металлические свойства ослабевают. Таким образом, наибольшие металлические свойства выражены у щелочных металлов, у которых радиус наибольший. Как вы думаете, почему у неметаллов больше различия в свойствах, чем у металлов?

ІІ. Нахождение металлов в природе.

На экране таблица. Металлы содержатся в ядре Земли и в земной коре, в воде рек, озер, океанов, в организмах животных и растений. Самым распространенным металлом в земной коре является AI, за ним следует Fe, Ca, Na, K, Mg, Ti. Содержимое остальных металлов незначительно. Так, например, в земной коре хрома Cr всего лишь 0,3%; Ni – 0,2%, Cu – 0,01%. Металлы встречаются как в свободном виде, как и в виде соединений. В свободном виде существуют химически малоактивные металлы (Cu, Ag, Au, Pt). Это так называемые самородные металлы, которые встречаются в виде отдельных кусков, зерен, вкраплений в горные породы. Но в основном металлы встречаются в виде солей (NaCI, Na NO3, CaCO3), а металлы средней активности в виде оксидов и сульфидов <рисунок 3>.

ІІІ. Металлы – простые вещества. Металлическая связь. Кристаллическое строение атомов.

Металлов в природе больше оттого, что у них у всех одинаковое строение кристаллической решетки и один тип химической связи. Это и придает им ряд общих свойств. Это отличает металлы от неметаллов, которым присуще больше различие свойств, чем их общность. В виде простого вещества атомы металлов связаны между собой, так называемой металлической связью. У металлов, особенно щелочных, валентные электроны связаны с атомами слабо и при отрыве затрачивается сравнительно немного энергии. При этом возникают ионы, имеющие устойчивый электронный слой из 8 электронов. Поэтому металлы как в твердом, таки в жидком состоянии существуют в виде ионов, между которыми в хаотичном движении находятся электроны, получившие условное название электронного газа. Ионы при столкновении с электронами на некоторое время превращаются в атомы. Таким образом, твердый металл представляет собой каркас из положительных ионов, атомов, погруженных в море подвижных электронов <рисунок 4>.

Металлическая связь – это химическая связь, образующаяся в результате электростатического притяжения между ионами и обобществленными электронами, принадлежащим не отдельным атомам, а всему кристаллу в целом.

А теперь давайте вспомним, какие виды химической связи вам уже известны. В чем суть ковалентной и ионной связи, рисуем электронные формулы молекул хлора и хлороводорода. Подведем итоги: что общего и в чем отличие металлической связи от ковалентной?

Сходство: валентные электроны находятся во взаимном пользовании атомов.

Различие: металлическая связь не является локализованной, электроны связывают не пару атомов, а принадлежат одновременно всем атомам данного металлического тела. На экране схема по различным типам связи (на дискете).

Все металлы, кроме Hg, франция, в обычных условиях являются твердыми веществами, имеют кристаллическое строение. Различное расположение ион-атомов обуславливает различие видов металлических кристаллических решеток. Чаще всего образуются три вида кристаллических решеток, давайте посмотрим на экран:

  1. Кубическая объемно-центрированная решетка. Атомы металла находятся в вершинах и центре куба. Каждый атом окружен восьмью атомами. Такую решетку имеют: Na, K, Li, Ba, Cr, Mo, W, V <рисунок 5>.
  2. Кубическая гранецентрированная. Атомы металла расположены по вершинам и граням куба: Ca, Cu, Sr, Ag, Fe, Co, Al, Au, Pt, Sb, Ni, Pb <рисунок 6>.
  3. Гексагональная (шестиугольная) плотно упакованная решетка. Она встречается у Zn, Mg, Be, Ti, Cd <рисунок 7>.

В зависимости от типа решетки атомы занимают в ней больше или меньше места. Например, в кубической объемно-центрированной решетки атомы занимают 68% пространства, а в кубической гранецентрированной 74 %. На экране схемы кристаллических решеток. Некоторые металлы Fe, Sn могут существовать в разных кристаллических решетках в зависимости от условий (явлений полиморфизма).

ІV. Физические свойства металлов.

Металлическая связь и особенности кристаллического строения обуславливают особые физические свойства металлов.

1. Агрегатное состояние. Все металлы твердые вещества, за исключением ртути и франция. А как вы думаете, почему так? Если не могут ответить сразу, на вопрос можно предложить ответить дома, используя дополнительную литературу.

В ртути присутствует некоторое количество молекул Hg с ковалентными связями, между собой они связаны слабыми вандерваальсовыми силами.

2. Металлический блеск. Электроны, заполняющие межатомное пространство, отражают лучи видимого спектра. Это вызывает непрозрачность и блеск металла. Как вы думаете, у какого элемента эта способность наибольшая и где она применяется?

В наибольшей степени эта способность проявляется у серебра и индия, поэтому эти металлы нашли применение при изготовлении зеркал. Металлы имеют блеск только в компактной форме, а в мелкораздробленном виде все металлы, кроме Mg u Al, черного или серого цвета. У немногих неметаллов (Si, I, Se, Te) также имеется некоторый блеск, напоминающий металлический, что связано с наличием некоторого количества электронов.

3. Цвет. Большинство металлов, почти полностью отражая лучи видимого спектра, приобретают серебристо – белый (Ni, Al) или серебристо – серый оттенки (Fe, Pb). Как вы думаете, почему золото желтое, а медь красная? Медь, золото, висмут, поглощают больше зеленые и голубые лучи светового спектра, а потому приобретают соответственно розово – красный, желтый и розовый цвет.

4. Тепло и электропроводность. Случай: пошли всем классом в поход и взяли с собой алюминиевую посуду, чтоб не разбилась, налили в нее чай и решили посидеть у костра, а удержать ее голыми руками не удается. Почему? Быстро нагрелась, как объяснить? Для металлов характерна большая теплопроводность. Свободные электроны, находящиеся в постоянном движении, все время сталкиваются с колеблющимися ионами, обмениваются с ними энергией. Следствием чего является быстрое выравнивание температуры по всей массе тела.

Электропроводность объясняется присутствием в металлах свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного к положительному полюсу. Электрическая проводимость и теплопроводность неодинакова: Как вы думаете, у какого из известных вам металлов электропроводность самая высокая? В ряду Hg, Pb, Fe, Zn, Mg, Al, Au, Cu, Ag она увеличивается.

Электропроводность зависит от температуры: с повышением температуры она понижается. Это объясняется тем, что при повышении температуры колебательное движение ионов, атомов усиливается, и это мешает направленному движению электронов. При температуре абсолютного нуля сопротивление металлов исчезает. Это явление называется сверхпроводимостью. У некоторых неметаллов, относящихся к полупроводникам, электропроводимость с повышением температуры увеличивается, т.к. увеличивается количество свободных электронов вследствие разрыва ковалентных связей. Например, при нагревании бора от комнатной температуры до 800° С его эл. проводимость увеличивается в 2 млн. раз. При снижении температуры, нарушенные ковалентные связи восстанавливаются и, следовательно, количество свободных электронов уменьшается. При низких температурах неметаллы не проводят электрического тока, т.к. у них отсутствуют свободные электроны. В этом коренное отличие между физическими свойствами металлов и неметаллов.

5. Пластичность и ковкость.

Пластичность – это способность тела легко изменять форму под действием внешних сил и сохранять полученную форму, кода эти силы перестают действовать. Пластичность сводится к сдвигу атомно-ионных слоев в решетке металлов относительно друг друга. Поскольку слои связаны между собой электронным газом, то при сдвиге связь не рвется и кристалл не разрушается. Ребята, как вы думаете, какой наиболее пластичный металл?

Наибольшей пластичностью обладает золото. Из него можно раскатать фольгу толщиной 0,001 мм, что в 500 раз тоньше человеческого волоса.

Ковкость – это способность не рассыпаться при ударе. Чем же объясняется ковкость многих металлов (щелочные, золото, медь). И почему некоторые металлы (сурьма, висмут) очень хрупкие? Самые хрупкие металлы находятся в V, VІ, VІІ гр. периодической системы. У атомов этих элементов от 5 до 7 свободных электронов (кроме наружных валентных электронов в электронный газ поступают электроны предвнешнего слоя). Такое большое число электронов сильнее связывает отдельные слои ионов и препятствует их свободному скольжению, пластичность металлов уменьшается.

6. Несмотря на одинаковый вид связи, различные металлы обладают характерными для каждого из них свойствами: температурой плавления, плотностью, твердостью. Эти свойства обусловлены строением атомов, зарядностью, размерами ион-атомов в кристаллической решетке, а также плотностью их упаковки. Давайте вспомним, как изменяется атомная масса и радиус в таблице?

Плотность металлов определяется атомной массой и размерами атома (радиус). Чем больше атомная масса и меньше радиус, тем плотнее металл. Поскольку атомная масса возрастает в периодической системе сверху вниз, а радиусы атомов уменьшаются при движении по ряду в больших периодах, наиболее плотными должны быть металлы побочных подгрупп І и VІІ гр. Действительно к наиболее тяжелым относятся золото, платина, осмий, а к наиболее легким – литий, калий, натрий. Можно сравнить щелочной металл Na и металл побочной группы хром. Металлы имеют один и тот же тип кристаллической решетки (кубическая объемно-центрированная), в наружном слое находится по 1 электрону, но натрий и хром имеют различные атомные массы, радиус, и заряды ионов. В отличие от натрия у хрома в образовании металлической связи, принимают участие еще 5 d - электронов предвнешнего уровня. В связи с этим свойства, указанных металлов резко различны. Na – мягок, легкоплавок, плотность его невелика, Cr – тверд, плотен, имеет высокую температуру плавления. Наименьшую плотность имеют щелочные металлы, например, р лития 0,53 г/см3, а наиболее плотными являются металлы VІІІ гр. Плотность осмия 22,6 г/см3. Металлы, плотность которых меньше пяти, называются легкими, а больше пяти – тяжелыми <рисунок 8>.

Металлы обладают различной твердостью. По степени твердости металлы сравнивают с алмазом, твердость которого принята за 10. Наиболее твердым является хром, а наиболее мягкими – щелочные металлы (легко режутся ножом) <рисунок 9>.

Сильно отличаются металлы и по температуре плавления. Самый легкоплавкий металл – ртуть (температура плавления – 38,8°С, самый тугоплавкий – вольфрам (3380°С). Металлы, плавящиеся при температуре выше 1000°С, называются тугоплавкими, ниже – легкоплавкими <рисунок 10>.

Чем же объясняется большое различие в плотности, твердости и температуре плавления? Установлено, что чем выше концентрация свободных электронов, тем ярче выражены перечисленные свойства.

В промышленности сложилось разделение металлов на черные и цветные. К черным относятся железо и его сплавы. К цветным: Cu, Zn, Pb, Sn. Особую группу цветных металлов составляют благородные металлы: серебро, золото, рутений, платина, палладий. Эти металлы не окисляются на воздухе даже при повышенной температуре и не разрушаются при действии многих химических веществ. Таким образом, мы рассмотрели основные физические свойства металлов.

V. Сплавы.

С самых древних времен человечество имеет дело не с чистыми металлами, а с их сплавами, обладающими часто такими свойствами, которые не имеют образующие их металлы. Как вы думаете почему? Например, Fe, Al, сравнительно мягкие, а их сплавы с металлами обладают достаточной твердостью. Получение сплавов основано на способности расплавленных металлов растворяться друг в друге, при этом почти всегда они свободно перемешиваются и образуют жидкие системы. При охлаждении расплавленные смеси затвердевают, образуются металлические сплавы с нужными свойствами: легкоплавкие, жаростойкие, кислотостойкие. Сплавы различают по составу и строению. Характер взаимодействия в сплаве зависит от их положения в периодической системе. Составные части могут образовывать либо твердый раствор, либо механическую смесь, либо химическое соединение. Твердые растворы: образуются между металлами одной группы или металлами, радиусы атомов которых мало различаются по размерам (Au-Ag, Ag-Cu, Cu-Ni, Fe-Mn). Чем дальше отстоят элементы друг от друга в таблице, тем меньше их взаимная растворимость, в этом случае образуется механические смеси. Такие смеси неоднородны. Расплавленные металлы при смешивании взаимодействуют друг с другом, образуя химические соединения, называемые интерметаллическими. Эти соединения не прочны, и в них не соблюдается стехиометрическое соотношение компонентов (CaAl5, AlCu3).

Таким образом, способность металлов в расплавленном состоянии не только механически смешиваться, но и образовывать между собой различные соединения – одна из причин, объясняющая, почему сплавы по физическим свойствам так резко отличаются от свойств, составляющих их металлов. Так, например, сплав, состоящий из одной части свинца и двух частей олова, плавится при температуре 180°С, тогда как свинец плавится при 328°С, а олово при 231°С. У бронзы прочность выше, чем у составляющих ее меди и олова. Сталь и чугун прочнее чистого железа. Помимо большой прочности многие сплавы обладают большой коррозийной стойкостью и твердостью. Также компонентами сплавов могут быть и неметаллы. Например, в состав чугуна входят C, Si, P, S. Помимо понятия сплав вы должны отличать понятие сталь. Различают два вида стали: углеродистая (Fe+ C, S, P, Si) и легированная (Fe, C+ Cr, Ni, W, Mo). Минус углеродистой в том, что она подвергается коррозии, поэтому стали получать легированную, нержавеющую и устойчивую к действию кислот.

Латунь – сплав меди и цинка. Мельхиор – сплав, содержащий около 80% меди и 20% никеля. Дюралюминий – сплав на основе алюминия, содержащей медь, магний, марганец и никель.

Заключение:

  1. Металлы располагаются в левой и нижней части периодической системы.
  2. У атомов металлов на внешнем энергетическом уровне обычно находится от 1 до 3-4 электронов.
  3. Атомы металлов – типичные восстановители.
  4. В природе металлы встречаются как в свободном виде, так и виде соединений.
  5. Для металлов характерна металлическая связь.
  6. Различное расположение ион-атомов обуславливает различие видов металлических кристаллических решеток.
  7. Металлическая связь и особенности кристаллического строения обуславливают особые физические свойства металлов.
  8. Получение сплавов основано на способности расплавленных металлов растворяться друг в друге, при этом почти всегда они свободно перемешиваются и образуют жидкие системы.

x